
Project Report: V8 Adaptive Inlining

Ishan Bhargava (ibhargav), Ethan Chu (ethanchu)

15-745

This semester, we have implemented a new inlining method in the V8 JavaScript JIT

engine, based on the paper ‘An Optimization-Driven Incremental Inline Substitution Algo-

rithm for Just-in-Time Compilation’

The web page for our project can be found here: (project webpage), and contains links

to the paper we implemented, as well as the source code for the project and benchmarks.

Contents

1 Introduction 2

2 Implementation Details 4

3 Experimental Setup 8

4 Experimental Evaluation 9

5 Conclusions 12

1

https://ishantheperson.github.io/15745-project-website/


Project Report — 15-745 Ishan Bhargava, Ethan Chu

1 Introduction

Unlike ‘traditional’ optimizing compilers such as LLVM and GCC, V8 has far more con-

strained resources. In language such as C++, Rust, or Swift, even the simplest ‘Hello world’

program can take seconds to compile, and for more complicated projects, compile times of

hours are not abnormal. These would all be completely unacceptable to V8, and therefore

V8 must optimize programs while avoiding taking up too much time on its own.

V8 runs a wide range of conventional compiler optimizations on programs, such as con-

stant propagation/folding, value numbering, strength reduction, and inlining. Contrary to

popular belief, many developers write JavaScript in a fairly functional style.

const salesJson = DownloadData();

const totalRevenue =

salesJson

.map(json => Record.TryParseJson(json))

.filter(maybeRecord => maybeRecord F= null)

.reduce((record, sum) => sum + record.totalPrice(), 0)

A naïve compiler would generate calls to each of map, filter, reduce, and each of those

functions would contain further calls to the lambda functions. However, all functions involved

here are quite small, and since the lambda arguments are constant at the call site, they could

be inlined to great effect. This inlining enables developers to write code in a more declarative

way, while not giving up too much performance.

2



Project Report — 15-745 Ishan Bhargava, Ethan Chu

1.1 Current Inlining Heuristic

Today, we expect to be able to do almost anything in a web browser, no matter how complex

the task. Google Docs allows us to collaborate on presentations in real-time, and Microsoft’s

Visual Studio Code runs a full IDE in the browser. The ubiquitous nature of the browser

means that V8 is one of the most finely-tuned pieces of software out there, and the current

inlining heuristic is already very good.

The current V8 inlining heuristic considers functions one a time. For each call site in a

function, it examines the call frequency (number of times executed over the number of times

the caller is invoked). At this stage, if a called function is very small, it is always inlined.

After examining all call sites, the heuristic ranks them by size and frequency and inlines

functions until the total inlined code size has exceeded a fixed threshold.

1.2 Our Approach

We follow a new approach to inlining described in the aforementioned paper. The paper

implemented their algorithm in the Java ‘Graal’ VM, but Java and JavaScript have more in

common than their four-letter prefix. Although Java is statically typed and compiled ahead-

of-time, the ahead-of-time compiler usually does not do any sophisticated optimizations,

and instead leaves as much information in the program as possible. All functions in Java

are virtual functions, due to frequent use of inheritance. This is similar to JavaScript, as

JavaScript must assume that any named function call can be rebound in the middle of the

program. Java also uses type information only available at runtime to optimize and specialize

functions, similar to what V8 does.

3



Project Report — 15-745 Ishan Bhargava, Ethan Chu

The key difference between the existing inlining and the paper’s heuristic is that the

paper’s heuristic examines the whole call tree below a function. It then is able to decide to

inline clusters of functions together, by taking into account the larger context. In addition,

the heuristic does not have a fixed size limit. It becomes harder for a function to meet

the criteria as the inlined code size becomes larger, but it is still possible for a small and

frequently called function to be inlined.

1.3 Related Work and Contributions

Although the paper already has been implemented in the Graal JVM, we did not look at

any their existing code. In addition, we doubt any existing code would have been useful as

we found that the most difficult parts of our project were interfacing with V8.

Our primary contributions are implementing what is essentially an interprocedural in-

lining framework onto V8. It is capable of dynamically exploring the call tree and inlining

across multiple functions.

2 Implementation Details

Our implementation involved modifying the inliner in V8. Specifically, we essentially rewrote

js-inlining-heuristic.cc.

Our heuristic fits into V8’s GraphReducer framework. It exposes a Reduce function

which is called on each node. First, we check that the node is something which can be

inlined (either a call to a function or an object constructor). Then, we make sure that the

call site has all the data we need to make an inlining decision, such as a reference to a

4



Project Report — 15-745 Ishan Bhargava, Ethan Chu

concrete function and optionally some statistics.

After we have verified that the preliminary conditions for inlining have been satisfied, we

proceed with the algorithm described in the paper. There are three phases to the algorithm:

expansion, analysis, and inlining.

2.1 Expansion

The first step in the algorithm is to expand the call tree to discover more candidates for

inlining. Initially, we build up a CallTree rooted at the current function V8 has decided to

optimize. We then look for functions called by the current function. This is not as easy as

it would be in languages like C or C++, because in JavaScript, functions references can be

dynamically altered. To account for this, V8’s JSCall instructions take the function to be

called as an operand, which may be an arbitrary computation. For our purposes, we need

to be completely sure about which function will be called in order to inline, so we only add

functions to the call tree if they are called via a HeapConstant node, as this indicates a

function which is statically known to be called.

The next challenge in building the call tree was the fact that functions are stored as

V8 bytecode, but optimizations are performed on V8 ‘sea-of-nodes’ graphs. For the root

function, since V8 is already optimizing it, the graph already exists, but for other functions,

this is not the case. It is not really feasible to do analysis on the bytecode, because it

becomes difficult to know if JSCall instructions are to a constant function, due to the fact

that use-def chains are not explicit in the graph.

The paper claims to continue the expansion phase until an expansionDone heuristic

5



Project Report — 15-745 Ishan Bhargava, Ethan Chu

returns true, but unfortunately that heuristic was never described in the paper. In practice

we found that most inlining benefit comes from inlining functions at a shallow depth in the

call tree, so we simply stopped the expansion phase after we exceed a certain depth.

2.2 Analysis

After we have discovered enough nodes in the call tree, we are ready to analyze it. The

purpose of the analysis phase is to create clusters, which will be inlined together in the final

phase. As we build the call tree, we annotate it with data such as call frequencies and local

cost-benefit tuples. The local cost-benefit tuple is defined as follows:

(Cost,Benefit) = (size(f), frequency(f))

Comparisons between tuples involve comparing their cost-benefit ratios. Tuples can be added

elementwise.

Our CallTreeF:Analyze() function is responsible for recursively analyzing child func-

tions in the call tree and then computing the cost-benefit tuple for the call subtree rooted

at a given node. For a given node n, we order the children by their cost-benefit ratios. For

each child ni in priority order (highest to lowest), we examine tuple(n) + tuple(ni). If this

value has a lower ratio than the n alone, then we ignore this child. Otherwise, we mark that

child as being potentially part of an inlining cluster rooted at ni.

6



Project Report — 15-745 Ishan Bhargava, Ethan Chu

2.3 Inlining

Finally we are ready to select functions to inline. For each node, we first apply the canInline

heuristic to determine if we should inline the cluster rooted at that node:

ratio(n) ≥ t1 · 2
size(n)
16·t2

This takes into account the cost-benefit ratio, as well as the total inlined size so far, all

scaled by experimentally-chosen constants. As the inlined size size(n) goes up, the cost-

benefit ratio must be higher to justify being inlined. This means that it becomes more

difficult for a clustser to be inlined as inlining progresses, but it is never impossible.

To inline a function, we would normally simply call the appropriate function on the

JSInliner class, but because we may be inlining functions deeper than our root function’s

immediate children, we need to do something more sophisticated. Usually, when V8 wants

to inline one function f into another g, it builds the graph of f inside of the graph of g (i.e.

sharing the storage). However, our inlining framework has already built up the graphs for

the child functions, since this was necessary when exploring the call tree. In addition, we

may have already mutated a child function’s graph if we inlined its own children. Therefore,

because we have an existing graph, we needed to make major modifications to JSInliner.

We need to shuffle all the nodes from our child graph into the parent graph. We do so by

copying each node individually, and then doing a second pass to ensure that all edges point

to nodes in the parent graph and not in the child graph.

7



Project Report — 15-745 Ishan Bhargava, Ethan Chu

3 Experimental Setup

To measure the impact of our code, we compare the performance of our code under 3 con-

ditions.

• Reference V8 with no inlining.

• Our V8 with adaptive inlining

• Reference V8 with no modifications

V8 contains an entry point executable d8. We use the built-in profiling capabilities of

d8 and examine two statistics. First, as expected, we examine the overall running time of

the program. Second, we examine the portion of the running time of the program spent in

JavaScript code, as opposed to JIT time in C++ or garbage collection time. This recognizes

the fact that there are inefficiencies in our implementation which arose out of necessity and

time. Notably, when we inline one graph into another, we currently make copies of all the

nodes, which could be much slower. In addition, when we analyze a child function, we have to

build the graph of that function from the bytecode. We were not sure about when bytecode

gets updated for a function, so therefore it was unclear how we could potentially re-use

graphs when necessary. We also examine the running time with no inlining to establish a

baseline to ensure that our optimization actually makes things faster.

We ran the benchmarks on a 2021 16-inch ARM-base 10-core M1 Max MacBook Pro.

For the ‘reference build’ benchmarks, we used the latest stable version of V8 at the time of

writing, which is version 10.0.139.15, running with --prof flag. For the ‘no-inlining’ version,

8



Project Report — 15-745 Ishan Bhargava, Ethan Chu

we added the --no-turbo-inlining flag. For our development version, the source code is

available in our repository in the new-inlining branch, and was compiled in release mode.

For our benchmarks, we use some ‘real world’ programs which implement some actual

algorithm, rather than compute some meaningless result. We use both our own programs as

well as the standard V8 benchmark suite. For more JavaScript benchmarks, we took some

benchmarks from the Chromium suite and increased the input sizes. We also wanted to

profile our implementation against the benchmarks the paper used, but we could not locate

the source code of the benchmarks provided.

4 Experimental Evaluation

Overall, we found the algorithm to produce mixed results. In many cases, the algorithm is

competitive with V8’s default inliner, sometimes producing faster results, and many times

being close behind.

9



Project Report — 15-745 Ishan Bhargava, Ethan Chu

0 1 2 3 4 5 6 7 8 9

access-binary-trees

controlflow-recursive

crypto-aes

date-format-tofte

math-cordic

math-partial-sums

math-spectral-norm

regexp-dna

string-base64

string-fasta

Total Time (s)

V8 Reference
Adaptive Inlining

Figure 1: Sunspider Selected Benchmarks

We see that overall, our performance is close to or sometimes exceeds that of the reference

V8. This makes sense, as our inlining algorithm is usually more aggressive with heavily called

functions, but also takes more slightly time to run. However, the test cases that are slower

are primarily the benchmarks which make heavy use of recursion. Our implementation does

not inline functions recursively, which may be the cause of these outliers.

10



Project Report — 15-745 Ishan Bhargava, Ethan Chu

Total JS
0

100

200

300

400

500

T
im

e
(t

ick
s)

Adaptive Inlining
No Inlining

V8 Reference

Figure 2: Linear Programming

Total JS
0

200

400

600

Figure 3: Fenwick Trees

Here are two more results from more sophisticated algorithms. Interestingly, we notice

that test cases which have a relatively larger speedup with V8’s regular inlining are even

faster when run with adaptive inlining.

Total JS
0

50

100

150

T
im

e
(t

ick
s)

Figure 4: Gaussian Blur

Total JS
0

5

10

15

20

Figure 5: Encryption (crypto.js)

In the Chromium bechmarks, the results are quite close, with our inlining method barely

taking the lead in some cases. This is consistent with our expectation that our inlining

method would be close in performance to the original inlining method in most cases.

11



Project Report — 15-745 Ishan Bhargava, Ethan Chu

5 Conclusions

Our goal was to evaluate the approach described in the paper, and we believe that we have

gathered enough information to do so.

We find that the inlining method presented in the paper is effective in most cases, but

we are not sure if it is effective enough to justify its complexity. The algorithm performs

well when dealing with object-oriented JavaScript code, such as those which make frequent

of one-line, simple functions such as object property ‘getters’ and ‘setters’.

The current optimizer considers functions in isolation, which is much simpler than at-

tempting to traverse the call tree of a function and recursively inline multiple times. Cur-

rently we have grafted this interprocedural analysis support onto V8’s optimizer, but imple-

menting first-class support for this may significantly increase complexity, as well as poten-

tially interfere with V8’s ability to optimize multiple functions in parallel.

5.1 Surprises and Lessons Learned

We were rather surprised at how the paper did not describe several of the heuristics it

used. This left us having to guess at what the authors intended, which makes it difficult to

reproduce the code. In addition, we wish the authors would have made it easier to find the

source code for the benchmarks they were using.

5.2 Future Work

We believe that our optimization itself could be further optimized to great effect. Further

work would need to be done in enabling V8 to conduct analysis across multiple functions in

12



Project Report — 15-745 Ishan Bhargava, Ethan Chu

an efficient way. For example, we believe it would be useful to store the sea-of-nodes graphs

of functions, in addition to their raw bytecode. This would be a major enhancement over

our current approach where we need to rebuild the graph from the bytecode every time we

need to inspect a particular function.

5.3 Distribution of Credit

We believe the credit should be evenly divided given. In order to facilitate a good level of

collaboration, we met in person to do much of the work. We found this very useful since the

V8 source code is quite complicated and is not extensively documented, so it was helpful to

work on it together.

13


	Introduction
	Implementation Details
	Experimental Setup
	Experimental Evaluation
	Conclusions

