Carnegie Mellon University

TIIIIIIIS

V8 Adaptive
Inlining

Ishan Bhargava, Ethan Chu

TIIIIIIs

Background

JavaScript has a lot of opportunity for inlining, so
inlining the "right things" is very important

const salesJson = DownloadData() ;

const totalRevenue =
salesJdson
.map (Jjson => Record.TryParsedson(json))
.filter (maybeRecord => maybeRecord !=null)

.reduce ((record, sum) => sum + record.totalPrice (), 0)

Carnegie
Mellon
University

Current Approach

e V8 current

e Has a haro

y examines functions one at a time

cutoff for when to stop inlining

e (Can be detrimental if "unlucky"

e Instead, try inlining subtrees of call tree

simultaneously

e Threshold for inlining becomes higher as size

increases, but never impossible

Carnegie
Mellon
University

Implementation Detalils

e (reate call tree
e Create local cost-benefit tup (cost, Benefit) = (size(f), frequency(f))
e For each function called by parent function, check
if it is better to additionally inline the child
function
e Inline functions based on equatic rto(?) = i 27
e As size(n) goes up, highly valuable functions may
still be inlined
Carnegie

Mellon
University

string-fasta
string-base64
regexp-dna
math-spectral-norm
math-partial-sums
math-cordic
date-format-tofte

crypto-aes

controlflow-recursive

access-binary-trees

|= V8 Reference
- = Adaptive Inlining

Total Time (s)

Generally similar
performance to
existing V8
inlining heuristic

Carnegie
Mellon
University

500 [— = 1 600 |-] -
400 | |] . -
4 400 | - = :
£ 300
=
= 200) 200
!0 Adaptive Inlining
100l No Inlining
00 V8 Reference
0 o Lo | 0
Total JS Total JS
Figure 2: Linear Programming Figure 3: Fenwick Trees

Carnegie
Mellon
University

Conclusions

e Algorithm is fairly effective and is sometimes
faster than existing work.
e May not be worth the complexity of

interprocedural analysis

e (ould interfere with concurrent optimization

Carnegie
Mellon
University

