
V8 Adaptive
Inlining

Ishan Bhargava, Ethan Chu

Background

JavaScript has a lot of opportunity for inlining, so
inlining the "right things" is very important
const salesJson = DownloadData();

const totalRevenue =

 salesJson

 .map(json => Record.TryParseJson(json))

 .filter(maybeRecord => maybeRecord != null)

 .reduce((record, sum) => sum + record.totalPrice(), 0)

Current Approach

● V8 currently examines functions one at a time

● Has a hard cutoff for when to stop inlining

● Can be detrimental if "unlucky"

● Instead, try inlining subtrees of call tree

simultaneously

● Threshold for inlining becomes higher as size

increases, but never impossible

Implementation Details

● Create call tree

● Create local cost-benefit tuple

● For each function called by parent function, check

if it is better to additionally inline the child

function

● Inline functions based on equation:

● As size(n) goes up, highly valuable functions may

still be inlined

Generally similar
performance to
existing V8
inlining heuristic

Conclusions

● Algorithm is fairly effective and is sometimes

faster than existing work.

● May not be worth the complexity of

interprocedural analysis

● Could interfere with concurrent optimization

